Emotion recognition with mobile phone & wearable sensor data

Replication paper

• Bogomolov, Andrey, et al. "*Daily stress recognition from mobile phone data, weather conditions and individual traits.*" Proceedings of the 22nd ACM international conference on Multimedia. 2014.

Yongshin Kim

Sensor Data Science (Fall 2020)

CONTENTS

01. Problem statement

02. Overview

03. Approach

04. Evaluation

05. Conclusion

06. Code review

Problem Statement

- Stress lowers the quality of life and causes various diseases. Research was actively conducted to analyze stress through physiological approaches. (Bogomolov, Andrey, et al. [1])
- What I want to predict? "Stress"
 - Using wearable devices and smartphones to track people's physical, physiological status so that we can understand the relationship between physical activities and stress level.

What others did in the past?

- Research on stress detection based on **voice analysis** considered different speech characteristics such as pitch, glottal pulse, spectral slope and phonetic variations. (Lu and colleagues. [2])
- Other studies focused on the video analysis of behavioural correlates of psychological stress. (D. Giakoumis et al. [4])
 - These systems, despite providing an unobtrusive method for stress monitoring, cannot be employed in a large variety of real world and mobile environments and pose privacy concerns related to the recording of people's behaviour.

Overview

- Dataset: K-Emophone
- Data preprocessing
 - eliminate missing values.
 - convert timestamp variable to a date.
 - set the time window three hours before and after ESM received.
 - combine ESM data with physical activity data.
 - devide stress data into two parts(non-stressed, stressed).
 - scale unification.
 - Outlier detection.
- Feature extraction
 - mean, median, min, max, variance, standard deviation.
 - use SHAP values to select important feature(feature selection).
- Classification
 - daily stress as a 2-class(binary) classification problem(non-stressed vs stressed).
 - decision tree(baseline model), support vector machines, **random forest**, Xgboost.
- Evaluation
 - K-fold cross validation (k = 10).

Dependent variable

- 1. Stress level
 - Negative skew
 - To address the imbalance in stress data, the stress level was changed from 7 point likert scale to binary scale

✓ -3, -2, -1 \rightarrow -1 and 0, 1, 2, 3 \rightarrow 1

• stressed vs non-stressed (Bogomolov, Andrey, et al. [1])

- Independent variables
 - 1. Physical data
 - heart rate, gsr, accelerometer-x, y, z
 - 2. User info data
 - openness, conscientiousness, neuroticism, extraversion, agreeableness
 - Researchers showed significant associations between person's stress and personality. (Duggan et al. [5])
 - 3. ESM data
 - valence, arousal, attention_level, emotion_duration, disturbance, emotion_change

Preprocessing

- Eliminate missing values.
- Convert timestamp variable to a date.
- Set the time window three hours before and after ESM received.
- Combine ESM data with physical data.
- Devide stress data into two parts(non-stressed, stressed).
- Scale unification.
- Outlier detection.

Feature extraction

- Because stress data is significantly less than physical data, features are extracted based on the time at which stress data is collected.
- Feature will be extracted 3 hours before and after stress data is collected.
- Mean, median, min, max, variance, standard deviation collected in a given time zone are applied to the stress data.

Approach

- Feature selection
 - Use SHAP values to select important features.
 - The top 20 variables(out of total 41) were selected.
- Model building
 - Decision tree (baseline model)
 - Support vector machines
 - Random forest
 - XGBoost
- K-fold cross validation (k = 10)
 - Referred to the replication paper.

Physical variables

	Precision	Recall	Accuracy	F1-score
Decision Tree(B)	0.545	0.546	0.564	0.545
SVM	0.296	0.500	0.592	0.372
Random Forest	0.491	0.493	0.550	0.483
XGBoost	0.532	0.529	0.571	0.528

Physical variables + User info variables

	Precision	Recall	Accuracy	F1-score
Decision Tree(B)	0.518	0.517	0.550	0.517
SVM	0.296	0.500	0.592	0.372
Random Forest	0.498	0.499	0.557	0.489
XGBoost	0.502	0.502	0.539	0.501

Evaluation

Physical variables + User info variables + ESM variables

	Precision	Recall	Accuracy	F1-score
Decision Tree(B)	0.583	0.586	0.599	0.583
SVM	0.824	0.712	0.761	0.716
Random Forest	0.686	0.660	0.702	0.665
XGBoost	0.730	0.667	0.723	0.672

Selected variables (SHAP values)

	Precision	Recall	Accuracy	F1-score
Decision Tree(B)	0.608	0.606	0.631	0.607
SVM	0.806	0.678	0.732	0.674
Random Forest	0.701	0.682	0.716	0.687
XGBoost	0.740	0.674	0.730	0.680

Conclusion

- The goal of the research was to predict people's daily stress level from three different sets of data: 1) physical data; 2) User info data; 3) ESM data.
- When only physical data was used, it seems to be a bit difficult to predict stress.(around 50%)
- However, by including user info data and ESM data, the results provide evidence that individual daily stress can be predicted with about 70 percent accuracy.
- Lastly, Among many features, SHAP values were used to find important features. As a result, it created the best performance model with around 70 percent accuracy.

- Stress data was transformed to binary variables from 7 points likert scales. As a result, It's hard to check how much stress the user's have.
- Instead of using complex deep learning models, this work only used somewhat simple machine learning models.

Code review

Hansoo(TA)

1. Feature extraction and Evaluation

- The difference between feature extraction and feature selection, as well as evaluation and research goals, is not clear.
- It is recommended to study how to grasp the feature importance by SHAP value for features extracted through SHAP values by rotating the entire model as taught in class.
- 2. Why you use those models: decision tree, SVM, and XGboost
 - There is no explanation as to why this model was used.
 - The baseline model doesn't exist in your code and explanation
- Panyu(peer)
 - recommend that more documentation about parameters are given.
 - for full dataset since it takes a lot of time, you may save it as a csv file.
 - compare with the baseline model

[1] Bogomolov, Andrey, et al. "Daily stress recognition from mobile phone data, weather conditions and individual traits." Proceedings of the 22nd ACM international conference on Multimedia. 2014.

[2] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. Campbell, D. Gatica-Perez, and T. Choudhury. Stresssense: detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp '12, pages 351–360, New York, NY, USA, 2012. ACM.

[3] K. R. Scherer, D. Grandjean, T. Johnstone, G. Klasmeyer, and T. B["]anziger. Acoustic correlates of task load and stress. In INTERSPEECH, 2002.

[4] D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras, G. Hassapis, A. Gaggioli, and G. Riva. Real-time monitoring of behavioural parameters related to psychological stress. Studies in health technology and informatics, 181:287, 2012.

[5] C. Duggan, P. Sham, A. Lee, C. Minne, and R. Murray. Neuroticism: a vulnerability marker for depression evidence from a family study. Journal of Affective Disorders, 35(3):139 – 143, 1995.

[6] <u>https://github.com/soyoungCf/shap</u>

[7] https://colab.research.google.com/drive/11wJC3S7On43OKuaECi1CS5pH8u9pPNJV

THANK YOU